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Abstract A novel non-rigid object tracking based on interactive user-define marker and
superpixel Gaussian kernel is proposed in this paper. In the initialization stage, instead of
using the traditional bounding box to locate the targeted object, we have employed an
interactive segmentation with user-defined marker to segment the object accurately in the first
frame of the input video to avoid the background influence in the traditional bounding box.
During the tracking stage, by using a Gaussian kernel as movement constraint, each superpixel
is tracked independently to locate the object in the next frame. Experimental results show that
the proposed method compared to state of the art methods can achieve better robustness and
accuracy for various challenging video clips.

Keywords Object tracking .Non-rigid . Superpixel . Interactive segmentation .Gaussian kernel

1 Introduction

Visual object tracking through video sequence is an important research area for a wide range of
practical applications in computer vision recently including surveillance, driving assistant
systems, augmented reality equipment, video segmentation and so on, which essentially deals
with non-stationary data, both the target object and the background that change over time [33].
Recently, numerous algorithms have been proposed to address non-stationary data, and these
algorithms have shown promising results [2–5, 8–10, 12, 14, 15, 19–21, 23, 26, 28, 30, 32,
34–36]. Ross et al. present an Incremental Learning Visual Tracker (IVT) that incrementally
learns a low-dimensional subspace representation, efficiently adapting online to the appearance
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changes of the target [28]. For updating an adaptive appearance model of a tracking system,
Babenko et al. [4] use Multiple Instance Learning (MIL) to train the appearance classifier
results in more robust tracking, and presented an online boosting algorithm for MIL. Some
algorithm for semi-supervised learning using a boosting framework (Semi Boost) [21] com-
bines the advantages of graph based and ensemble methods, resulting in a better semi-
supervised learning. Kahn et al. [36] replace the traditional importance sampling step in the
particle filter with a novel Markov chain Monte Carlo (MCMC) sampling step to obtain a more
efficient MCMC-based multi-target filter. They demonstrate that the resulting particle filters
deal efficiently and effectively with complicated target interactions. Moreover, the template
object is represented by multiple image fragments or patches in Frag-track [2]. In visual
tracking decomposition (VTD) scheme [19], the observation model is decomposed into
multiple basic observation models that are constructed by sparse principal component analysis
of a set of feature templates. An on-line random forest (ORF) is proposed to overcome the
limitation of traditional RF algorithms in practical usability [30].

In this paper, our main contributions are to propose a novel non-rigid object tracking
scheme using interactive segmentation and superpixel Gaussian kernel. In the initialization
stage, an interactive segmentation with user-defined marker is proposed to segment the object
accurately in the first frame of the input video to avoid the background influence in the
traditional bounding box. An over segmentation technique is applied to obtain certain number
of superpixels, where the color and texture features are extracted by a color histogram and
Contourlet transform. Then the object is located by the superpixel merging and the location
matrixes are created for tracking. During the tracking stage, a Gaussian kernel is proposed as
movement constraint, each superpixel is tracked independently to locate the object in the next
frame. In the next section, the related works are described. In section 3, the initialization
process for non-rigid tracking is described in details. In section 4, the superpixel based
Gaussian kernel tracking algorithm will be explained. Experimental results are discussed in
section 5. Finally, conclusion is drawn in section 6.

2 Related works

One of the most challenging visual tracking topics is non-rigid object tracking which handles the
appearance variation of a target object. Though there are many difficulties, many works have
been demonstrated to be effective or potential to track non-rigid objects in short durations and in
well controlled environments. In this section, we have discussed the related non-rigid object
tracking algorithms and put our work in proper context. A tracking method from the perspective
of midlevel vision with structural information captured in superpixels is proposed in [11, 31],
which is incorporated in an appearance model to distinguish the foreground target and the
background. The appearance model is constructed by clustering a number of superpixels into
different clusters. Patch-based method is one kind of most popular non-rigid object tracking
algorithm. Kwon et al. develop a local patch-based appearance model and provide an efficient
online updating scheme that adaptively changes the topology between patches [17, 18]. In the
online update process, the robustness of each patch is determined by analyzing the likelihood
landscape of the patch. Based on this robustness measure, the proposed method selects the best
feature for each patch and modifies the patch by moving, deleting, or newly adding it over time.
However, it is not enough to handle severe occlusions and multiple objects. Inspired by the
patch-based algorithms, a novel coupled-layer visual model is proposed [6, 7]. It combines the
target’s global and local appearances by interlacing two layers. Mazinan and Amir-Latifi
improve the Mean-shift (MS [10]) tracking algorithm by proposing an improved convex kernel
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function in association with the Kalman filter approach (KFA) [22]. It is able to estimate the
location of the rigid and non-rigid objects. The below algorithms are successful in tracking non-
rigid object. However, most of the existing non-rigid tracking approaches are limited by a
bounding-box. Consequently, they would begin the tracker with a rather inaccurate object
description in the first frame to include some background information. To avoid this problem,
Godec put forward a generalized Hough transform based approach [13]. Especially, they apply
the approach of Felzenszwalb to overcome the limitation of rectangular bounding-box [12].

Most related to [13], the initialization of the proposed algorithm is employed with an
interactive segmentation scheme to segment the object accurately in the first frame of the input
video to avoid the background influence in the traditional bounding box. Recently, semi-
automatic segmentation methods incorporating simple user interaction have been actively
researched [16, 24, 25, 27, 29]. The aim of interactive segmentation is to extract foreground
objects from complex background through user interaction. In interactive segmentation, the
user’s interactive information is effectively employed for getting some prior information which
leads to good segmentation performance. The MSRM algorithm ([24]) is most suitable for our
paper, because our tracking scheme is also on region / superpixel level.

3 Object initialization using interactive segmentation

In our proposed non-rigid tracking scheme, the tracking process can be organized in two
stages: initialization stage and tracking stage. In the initialization stage, an interactive segmen-
tation is employed with user-defined marker to segment the object accurately in the first frame
of the input video to avoid the background influence in the traditional bounding box. The
traditional bounding-box initialization may not able to appropriately bound the object and
results in large portion of background in the box [13]. The visual comparison is shown in
Fig. 1, where the desired object is marked with green marker, and mark the background region
with blue marker. From Fig. 1 (b) and (e), our initialization can accurately extract the desired
target object in the first frame of the input video. Our approach allows tracking of objects with
complicated background. However, as shown in Fig. 1 (c) and (f) using the traditional
rectangular bounding box will include the irrelevant background information to represent the
target object, which may cause less robust tracking performance.

Fig. 1 Initialization in the first frame: (a) & (d) user marker; (b) & (e) interactive segmentation based
initialization; (c) & (f) bounding-box initialization
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In order to locate the target object accurately, interactive segmentation is employed with
user-defined marker for object initialization. An over segmentation technique is applied to
obtain certain number of superpixels, where the color and texture features are extracted by a
color histogram and Contourlet transform. Then the object is located by the superpixel
merging and the location matrixes are created for tracking. The overall the object initialization
process is shown in Fig. 2 and the details of each step are described in following subsections.

3.1 Over segmentation

Although there are many over segmentation methods which can also generate superpixel for
our proposed object initialization, we have chosen the fast and efficient Simple Linear Iterative
Clustering (SLIC) [1] for superpixel generation. The SLIC method can divide an image into a
number of equal-size superpixels and also better adhere to the object’s edge. Therefore, the
SLIC method is applied to the first frame of input video sequence to obtain m superpixels {s11,
s12, … s1m}.

3.2 Feature extraction

After the superpixel generation, the next step is to classify accurately the object contour and
the background. One of the key issues in the following tracking process is how to determine
the similarity distance between the unmarked superpixels with the marked object superpixels
so that the candidate objects superpixels can be tracked with some logic control. Therefore, it is
necessary to define a superpixel feature to measure the similarity distance between two
superpixels si and sj.

Our superpixel feature includes both color and texture information in order to handle the
complex background. A superpixel is generally represented by a color histogram. However, we
cannot rule out the case that superpixels belong to target object share close color with its
neighboring background. Taking account of texture feature compensates the drawback of the
sole color feature. Hence, on one hand, color histogram is applied as normalized color feature. In
this paper, the RGB color space is used to compute the color histogram. We uniformly quantize
each color channel into 16 levels and then the histogram of each region is calculated in the feature
space of 16×16×16=4,096 bins [24]. Sum up, the normalized color feature is shown as below

si: f h ¼ Histsi1;…;Histsi4096ð Þ
norm Histsi1;…;Histsi4096ð Þð Þ ð1Þ

where Histsi is the normalized histograms of si, and the superscript u represents its uth element.
On the other hand, the texture feature is a Contourlet transform based feature. First, every
irregular superpixel is extended to its circumscribed square. In non-rigid object tracking, the
target may rotate gradually and cause a tracking drift. To handle this challenge, the rotation
invariant Contourlet feature is chosen as texture feature. In this paper, the Contourlet transform
includes one level Wavelet and two levels of Pyramidal decomposition. Therefore, the normal-
ized Contourlet transform based feature vector is as below

si:fc ¼ norm Ci1ð Þ; …; norm Ci10ð Þð Þ
norm norm Ci1ð Þ; …; norm Ci10ð Þð Þð Þ ð2Þ

where i is the sequence number of each superpixel, and Cij, j=1 … 10, is the component of
Wavelet transform and two level Pyramidal decomposition. Then their normalized energy is
computed to compose the 10-dimensional vector (norm (Ci1) … norm (Ci10)).
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3.3 Superpixel merging

Traditional tracking methods begin with a bounding-box which would cause less accurate
foreground / background separation. Generally, the bounding-box is slightly larger than the
object so that the object could be fully contained. However, due to the object is not always in
rectangular shape, the bounding box unavoidably contained some background and the system
mistakenly assumes that as parts of object. Therefore, we put forward to optimize the initial
target extraction from the user input by interactive segmentation approach which is a region
merging based method. It automatically merges the superixels segmented by initial segmen-
tation, and then effectively extracts the object contour by labeling all the non-marker regions as
either background or object.

First of all, the user input the superpixels of the first frame {s11, s12,… s1m}. Moreover, the
user needs to mark the superpixels of interest and background. The color histogram and
Contourlet transform based superpixel features of {s11, s12,… s1m} are calculated to define the
similarity of each superpixel. Then, object superpixels and background superpixels are
respectively merge by maximal similarity based merging rule [24]. The whole MSRM process
includes two stages which are repeatedly executed until there are two regions left – object and
background. The scheme is to merge background regions as many as possible and keep object
regions from being merged. Once all the background regions are merged, it means that the

Fig. 3 Location mapping process: an image frame is mapped to superpixel matrix whose elements include
histogram feature, Contourlet transform feature and marker type
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target object is extracted. Finally, the object superpixel set O1={o11 … o1m} and background
superpixel set B1 ¼ O1 are extracted.

3.4 Location mapping

After SLIC initial segmentation and interactive segmentation based initial target extraction, the
tracking will begin with the object and background superpixel sets. For more convenient and
accurate to locate the object superpixels in next frame, map each frame of the input video into
location matrixes.

Location 
matrix mi

Over 
segmentation

ith frame fi

Superpixels 
Si = {si1, si2, … sim}

Gaussian kernel 
tracking

Object set Oi 
and background 

set Bi

Location matrix 
mi-1

Location mapping

Inverse location  
mapping Object set Oi -1

Fig. 4 The proposed superpixel based Gaussian kernel tracking scheme
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Every frame is transferred to a location matrix: each element in location matrix
corresponds to each superpixel in the original frame; the corresponding location of each
original superpixel will be represented by the coordinate of location matrix; the value of
each element in location matrix is the superpixel feature of each superpixel in the original
frames. As shown in Fig. 3, the current image frame is mapped to superpixel matrix whose
elements include histogram feature, Contourlet transform feature and marker type. The
marker type denotes the marker type of every superpixel. It includes three types: object,
background and unknown.

Feature 
Similarity 

Object superpxiel oi-1j
in (i-1)th frame

Gaussian confidence 
matrix G 

Feature 
extraction

oi-1j.fh,
oi-1j.fc

Feature 
extraction

Si = {si1.fh,
si1.fc …}

{oij …} Oi

({oij …} is superpixel 
subset similar to oi-1j)

More object superpixel
in ith frame?

Candidate superpixel 
set Si in ith frame 

No

Output Oi and Bi

Yes

Movement
constraint

{d(si1, oi-1j), 
d(si2, oi-1j)…}

{G · d(si1, oi-1j), 
G · d(si2, oi-1j)…}

Gaussian 
Similarity 

i++

Threshold T

Fig. 5 Gaussian kernel tracking for each superpixel in ith frame
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4 Superpixel based Gaussian kernel tracking

The aim of tracking task is to find out the object superpixels in current frame using
information in previous frames. In general, there are not dramatic changes in the similarity
and probability density of two consecutive frames. Hence it could be reasonably assumed
that a superpixel of the target in the previous frame does not move far away in the following
frame. The object locations distanced away, which considered being less possible, should
weigh much less than nearby locations. Therefore, a superpixel based Gaussian kernel
tracking scheme is presented, where a Gaussian confidence map is employed as the
movement constraint. The Gaussian based similarity measure between object superpixels in
previous frame and superpixels in current frame depends on two factors: one is the feature of
this superpixel, and the other is the confidence distance (Gaussian distance) between current
superpixel in the current frame and the corresponding object superpixel in previous frame.
Figure 4 shows the general framework for our proposed superpixel based Gaussian kernel
tracking scheme. When an object superpixel in the (i-1)th frame and the candidate
superpixels in the ith frame are input to the proposed superpixel based Gaussian kernel
tracking scheme, every superpixel is represented by the superpixel feature based on color
histogram and Contourlet transform. At the meantime, the similarity between the object
superpixel and the candidate superpixels is measured. Then, the mentioned Gaussian kernel

Fig. 6 Explanation of Gaussian movement constraint through an example: the center is the location of object
superpixel in previous frame; the number in each position is the Gaussian weight of the similarity between object
superpixel in previous frame and candidate superpixel in current frame; the farther the superpixel is to the center,
the less the Gaussian weight of similarity with the object superpixel is

Table 1 List of the parameters used in the experiments for our tracker

Parameters

Over segmentation size of superpixel: 144 compactness: 12

Feature similarity measure w1=0.8 w2=0.2

Gaussian based movement constraint σ=6.4

Gaussian similarity comparison threshold T=0.0031
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based movement constraint is applied to weigh the possible shift location of the successive
object superpixel. Finally, after comparing the object superpixel with all the candidate
superpixels, some candidate superpixels which are most similar to the object superpixel
would be chosen as the object superpixels in the ith frame. This procedure will be repeated
until all the remaining frames in video sequences has been processed.

(a)                                (b)

(c)                                (d)

Fig. 7 The tracking process: (a) original frame (#1); (b) user marker and SLIC segmentation (#1); (c) interactive
segmentation result (#1); (d) final tracking result (#227)

Fig. 8 Tracking result of our tracker on sequence bird: (a) frame #12; (b) frame #36; (c) frame #48; (d) frame #95
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4.1 Feature similarity measure

Suppose that si is the object superpixel in the previous frame, and sj is one of candidate
superpixels in the current frame. The superpixel similarity measure of color histogram dh
between si and sj will be defined as dh(si, sj)=fh(si)·fh(sj), which is within [0, 1]. The

Fig. 9 Tracking result of our tracker on sequence gymnastics: (a) frame #59; (b) frame #100; (c) frame #152; (d)
frame #172

(a)                                (b)

(c)                                (d)

Fig. 10 Tracking result of our tracker on sequence skiing: (a) Frame #3; (b) Frame #18; (c) Frame #41; (d)
Frame #54
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superpixel similarity measure of Contourlet transform dc between si and sj is defined as dc(si,
sj)=fc(si)·fc(sj), which is also within [0, 1]. Therefore, d is denoted by d(si, sj)=w1·dh(si, sj)+

(a)                                    (b)                                    (c)

(d)                                    (e)                                    (f)

(g)                                    (h)                                    (i)

(j)                                    (k)                                    (l)

(m) (n) (o)

(p) (q) (r)

Fig. 11 Tracking results of five competing tracking algorithms and our tracker on sequence high-jump. (a) - (f)
are the tracking results of CT, IVT, L1, MCMC, SPT and our tracker on #20. (g) - (l) are the tracking results on
#31. (m) - (r) are the tracking results on #67 ((q) is the tracking result of SPT on #67, but the bounding box of
tracking result is out of the frame)
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w1·dc(si, sj), where w1 and w2 are weights. The higher d is, the higher the similarity between
the features of two superpixels is. Figure 5 shows the Gaussian kernel tracking for each
superpixel in ith frame.

(a)                                    (b)                                    (c)

(d)                                    (e)                                    (f)

(g)                                    (h)                                    (i)

(j) (k) (l)

(m)                                    (n)                                    (o)

(p)                                    (q)                                    (r)

Fig. 12 Tracking results of five competing tracking algorithms and our tracker on sequence mountain-bike. (a) -
(f) are the tracking results of CT, IVT, L1, MCMC, SPTand our tracker on #18. (g) - (l) are the tracking results on
#94. (m) - (r) are the tracking results on #166
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4.2 Gaussian based movement constraint

After the computation of the feature similarity measure for two superpixels, Gaussian kernel is
applied to define the location difference between two superpixels. Formally, the Gaussian
similarity of these two superpixels is defined as:

G centerxþ distancex; centeryþ distanceyð Þ ⋅ d si; s jð Þ ð3Þ

where G is the Gaussian confidence matrix, (centerx, centery) is the center of Gaussian kernel,
distancex and distancey are the distance between si and sj

distancex ¼ si:x−s j:x
�
�

�
�

distancey ¼ si:y−s j:y
�
�

�
�

ð4Þ

where si.x and sj.x are the x-coordinate of the location of si and sj; si.y and sj.y are the y-
coordinate of the location of si and sj. Especially, the center of every Gaussian kernel map in
current frame is the same location of every object superpixel in previous frame.

Therefore, for every object superixel in previous frame, the corresponding pending
superpixel is new object superpixel in current frame when the value of G·d is the greatest.
More details about the movement constraint are shown by Fig. 6.

4.3 Gaussian similarity comparison

When the ith object superpixel si in previous frame is input, and si will be compared with the
whole candidate superpixel set by using Gaussian similarity G·d. If a Gaussian similarity is
greater than the predetermined threshold T, this candidate superpixel will be chosen as the
corresponding object superpixel set to si. Therefore, the similar superpixels to si form an object
superpixel subset. Then, the next object superpixel si+1 will also compare with the remaining
candidate superpixels. Likewise, the similar candidate superpixels to si+1 will form another
object superpixel subset in current frame. The iteration is over until find out all similar
superpixels to object superpixel set in previous frame. By that time, the whole object
superpixel set in current frame is collected.

5 Experimental results

We have analyzed the performance of our proposed non-rigid object tracking based on
interactive segmentation and superpixel Gaussian kernel with several challenging video
sequences. The sequences include either a non-rigid object which undergoes significant
appearance changes. Our tracker is implemented in Matlab R2009a and runs on an Intel Core
i7-3517U CPU with 4GB RAM. The tracker has been tested on some of the most challenging
sequences (non-rigid case) are reported in this paper [11, 13, 31]. These sequences include
complex background, fast movement, large variation in pose and scale, etc. The proposed
algorithm have been compared with some prior works: standard Markov chain Monte Carlo

Fig. 13 Tracking results comparison of CT, IVT, L1 tracker, MCMC, Superpixel tracking and our tracker. The
horizontal axes in the sub-figures denote the number of frames in the video clips. The vertical axes in the sub-
figures denote the Euclidean distance between the center of ground truth and segmented results at every frame
(center error)

�
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based method (MCMC) [36], Incremental Learning Visual Tracker (IVT) [28], Compressive
tracking (CT) [35], tracking using L1 minimization (L1) [32] and Superpixel tracking (SPT)
[31]. In the following experiments, all algorithms start with the same target in the first frame.
The parameters of our tracker are set as listed in Table 1.

In Fig. 7, we can comprehend the tracking process. After SLIC over segmentation, user
needs to mark the desired target by user scribbles.

Since the intended purpose of our tracker is the tracking of non-rigid objects that may
deform during runtime, the performance on several challenging sequences will be demonstrat-
ed later. Therefore, at first three sequences bird, gymnastics and skiing showing non-rigid
deformations is evaluated, respectively consisting of about 103 frames, 766 frames and 80
frames. The results of Figs. 8, 9 and 10 show that our tracker can not only locate the objects’
positions, but can also not contain any background region.

Figures 11 and 12 show the tracking results of other five competing algorithm and our
tracker using sequence high-jump and mountain-bike. They are both challenging sequence
where the non-rigid objects move dramatically. All other trackers are fail to track the object
correctly in one sequence or both two sequences. On one hand, from Figs. 11 and 12, the
results from our tracker are significantly better than the results of CT and IVT. Especially, the
results of SPT might even be out the frame (Fig. 11 (q)). On the other hand, the background
information outside the desired object is exclusive by our tracker. The test sequence high-jump
includes the scale change of a target. In this case, the object became smaller during the tracking
process. While our method is adaptively glued to the outline of target because of SLIC initial
segmentation, and successfully tracked it.

The tracking results comparison of five competing algorithm and our tracker are presented
in Fig. 13. It denotes the Euclidean distance between the center of ground truth and
segmented results at every frame (center error) of different competing algorithms. The results
show that our proposed method has better and robust performance for different video
sequences.

Table 2 shows tracking results of the selected approaches evaluated on different video
sequences. It denote the percentage of frames for each sequence until the tracking
approach fails by visual inspection. In addition, Table 3 denote the average Euclidean
distance from the center location of ground truth (average center error on the whole
frame). From Table 2 and Table 3, our proposed tracker is more robust in different non-
rigid tracking video sequences, while most other state-of-the-art methods fail in one or
more video sequence.

Table 2 Quantitative evaluations 1: percentage of frames correctly tracked until failure

CT [35] L1 [32] SPT [31] IVT [28] MCMC [36] Ours

skiing 19 18 70 10 15 73

mountain-bike 22 100 100 11 100 100

diving 43 48 85 62 100 100

gymnastics 21 4 33 100 100 58

high-jump 28 15 28 15 28 100

transformer 34 29 100 52 31 100

bird 100 62 100 40 55 100

surfer 3 59 12 6 11 93

Average 34 42 66 37 55 91

5488 Multimed Tools Appl (2016) 75:5473–5492



6 Conclusion

In this paper, a novel non-rigid object tracking scheme using interactive user-defined marker
and superpixel Gaussian kernel is proposed. By the combination of interactive segmentation
techniques and superpixel based kernel tracking framework, it is able to track objects in some
challenging non-rigid sequences. The interactive segmentation framework is employed for
providing a better initialization of user input than traditional rectangle bounding-box based
approaches. The interactive segmentation allows for an accurate initial separation of object
and background to improve the accuracy of tracking. Moreover, experimental results dem-
onstrate that our proposed method compared to state-of-the-art methods can achieve better
robustness and accuracy for tracking non-rigid objects in different video sequences. For the
future work, we would develop a more adaptive and effective over-segmentation to replace
the SLIC over-segmentation in order to further improve the segmentation results of highly
non-rigid objects.
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